Menu
Communiqués et dossiers de presse

Cancer du col de l’utérus : première résolution 3D d’une oncoprotéine du virus à papillome humain

11 Fév 2013 | Par INSERM (Salle de presse) | Bases moléculaires et structurales du vivant | Cancer

Des chercheurs strasbourgeois du laboratoire Biotechnologie et signalisation cellulaire de l’École Supérieure de Biotechnologie de Strasbourg (CNRS/Université de Strasbourg) et de l’Institut de génétique et de biologie moléculaire et cellulaire (CNRS/Université de Strasbourg/Inserm) ont résolu, pour la première fois, la structure tridimensionnelle d’une oncoprotéine majeure, impliquée dans la prolifération cellulaire et à l’origine du développement du papillomavirus humain. Celui-ci, de type 16 (HPV 16), est  le plus dangereux de ces virus, responsable des cancers du col de l’utérus. Ces travaux, publiés le 8 février 2013 dans Science, devraient permettre l’identification et l’amélioration de médicaments bloquant les activités tumorigènes de la protéine.

Le cancer du col de l’utérus est l’un des cancers les plus fréquents au monde et le deuxième en termes de mortalité chez la femme. Il est provoqué par les virus à papillome humains (HPV) dits à « haut risque muqueux» (1). Le papillomavirus humain de type 16 (HPV 16) est le plus dangereux. Lorsque le virus HPV infecte une cellule saine, il doit provoquer la multiplication de ces cellules pour se reproduire. Deux de ses protéines, E6 et E7, induisent cette prolifération cellulaire et sont responsables de la prolifération des tumeurs du col de l’utérus, d’où leur nom : « oncoprotéines ».

L’équipe de Gilles Travé, chercheur CNRS au laboratoire Biotechnologie et signalisation cellulaire (CNRS/Université de Strasbourg), en étroite collaboration avec les équipes de Jean Cavarelli et de Bruno Kieffer de l’Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/Université de Strasbourg/Inserm) a résolu, pour la première fois, les structures tridimensionnelles des protéines E6 des virus à papillomes humain de type 16 (HPV 16) ainsi que son équivalent bovin de type 1 (BPV1). La structure de E6 de HPV16 avait déjà été résolue en 2012 (2) par ces mêmes chercheurs sous forme libre mais, cette fois, les protéines E6 sont visualisées en train de capturer des protéines cellulaires cibles.

La structure d’une protéine E6 entière, attendue depuis près de trente ans, n’avait jamais été résolue auparavant car celle-ci est très difficile à produire dans un laboratoire.

Pour ce faire deux processus ont été nécessaires : d’une part la mise au point de techniques permettant d’isoler la protéine E6 et d’autre part l’utilisation combinée de techniques de résonance magnétique nucléaire (RMN) (3) et de cristallographie (4). Après avoir traité différents problèmes d’agrégation et de purification, les chercheurs ont réussi à produire la protéine E6. Le défi à ce stade était de conserver son repliement (la capacité à s’auto-organiser de la protéine et donc sa fonction biologique). L’acquisition de données de RMN et de cristallographie ont permis d’établir la structure de la protéine E6 à l’aide d’outils informatiques et d’obtenir ainsi sa « photographie » tridimensionnelle à haute résolution.

La structure tridimensionnelle de la protéine E6 capturant sa cible révèle précisément le mécanisme moléculaire de son activité cancérogène et explique aussi l’étonnante capacité de la protéine à détourner, tel un terroriste viral, un grand nombre de fonctions de la cellule infectée.

Au niveau thérapeutique, cette avancée est d’une grande importance dans la lutte contre le cancer du col de l’utérus, car elle devrait permettre l’identification et l’amélioration de médicaments bloquant les activités tumorigènes de la protéine.

cancer du col de l'utérus

E Soleilhac/Inserm

Cellules issues d’un cancer du col de l’uterus (cellules HeLa) traitées pendant 2h avec du paclitaxel, une drogue anti-cancéreuse connue pour bloquer la dépolymérisation des microtubules.

(1)       Souche à haut risque : Les virus HPV se classifient à haut risque et à bas risque suivant leur capacité à induire ou ne pas induire le cancer. Les principales souches à haut risque du virus du papillome humain sont les types 16, 18, 31, 33 et 51.

(2)       Zanier K, Ould M’hamed Ould Sidi A, Rybin V, Boulade-Ladame C, Rybin V, Chapelle A, Atkinson RA, Kieffer B, Travé G. Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 2012, 20(4):604-617.

(3)       Résonance magnétique nucléaire : méthode d’étude des molécules biologiques qui consiste à mesurer les phénomènes de résonance dans le noyau de certains atomes. Elle est utilisée pour connaitre la structure d’une protéine.

(4)       Cristallographie : méthode qui permet de connaître la structure atomique  d’une protéine sous forme de cristal par diffraction de rayons X.

Contacts
Contact Chercheur
Gilles Travé l T 06 52 47 60 52/03 68 85 47 20 l rf.artsinu@evart.sellig Katia Zanier l T 03 68 85 44 06 l rf.artsinu@reinaz
Sources
Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Zanier K, Charbonnier S, Ould M'hamed Ould Sidi A, Mc Ewen AG, Ferrarrio MG, Poussin P., Cura V, Brimer N, Ould Babah K, Ansari T, Muller I, Stote RH, Cavarelli J, Vande Pol S, Travé G. Science, 8 February 2013, Vol. 339 no. 6120 pp. 694-698
fermer